

Separations Consortium March 4th, 2019

Technology Session Review Area: Separations for Thermochemical Processes

Michael Hu, YuPo Lin, Kim Magrini, Huamin Wang

Goal Statement

Low level contaminants can be catastrophic for industrial processes

BETO analyses identified separations challenges that, if resolved, could reduce

minimum fuel selling price of biofuels by up to 50%

Goal: Develop efficient separations to remove contaminants from biomass-derived feedstocks before thermochemical conversion by:

- Removing contaminants to preserve upgrading catalyst performance for CFP, HTL
- Valorizing carbon from HTL aqueous process streams to offset costs
- Intensifying separation processes to reduce process costs

Outcome: Efficient, integrated separation technologies that enable biofuels and chemicals for thermochemical conversion

Relevance to Bioenergy Industry: High C and H atom efficiencies are <u>essential</u> to achieve BETO cost target of a \$3/gge MFSP and >50% GHG reduction

TCS Quad Chart Overview

Timeline

Start Date: October 2016End Date: September 2019

Percent Complete: 78%

	Total Costs Pre FY17	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19-Project End Date)
DOE Funded ANL NREL PNNL ORNL	\$0.0 \$0.0 \$0.0 \$0.0	\$100K \$150K \$ 60K \$490K	\$ 90K \$370K \$190K \$995K	\$180K \$395K \$140K \$970K

Partners: ANL (9%), NREL (22%), ORNL (59%), PNNL (9%)

BETO Projects: ChemCatBio, CCPC

University of Florence

Barriers Addressed:

Ct-O. Selective Separation of Organic Species

 New separation processes for cleaning preconversion biomass derived vapors and liquids

Ct-P: Selective Separations of Inorganic Contaminants

Selective removals of particulates from biomass vapor feeds

Ct-E. Improving Catalyst Lifetime

Via upstream contaminant removal

Objective

Develop efficient thermochemical separation processes targeting significant CAPEX and OPEX cost savings (via TEA) through catalyst preservation, carbon valorization and process intensification strategies

End of Project Goal

[NREL, ORNL] Demonstrate at least a 10% decrease in catalyst coking by cofeeding VGO and FP oil which has been passed over a hot gas filter and has the heavy (>300°C), coke-precursors compounds removed using fractional condensation.

Project History/Overview

History: Separation materials (catalysts, sorbents, membrane) longevity is a known barrier to cost-effective thermal biomass conversion.

New project in FY17, catalyst preservation, feed cleaning, carbon valorization are

three challenges

Context:

- Extending catalyst lifetime for bio oil upgrading is critical
- Valorizing carbon in bio oil/crude waste streams offsets process costs

Project Goals:

- Remove contaminants from bio-oil, bio crude feedstocks to improve upgrading catalyst lifetime
- Valorize carbon from HTL aqueous streams to offset process cost
- Use TEA and LCA to quantify impact on efficiency improvement and cost reduction

Project Management

Project Management

- Monthly webinars (SepCon)
- Quarterly reports
- Bi annual meetings for progress review with IAB
- Milestones with explicit technical targets to meet

Project Management: 4 TCS Tasks

[1:] Catalytic Hot Gas Filtration for Biomass Fast Pyrolysis Vapor Chemistry Tailoring for Fuels/Chemicals

Fast Pyrolysis
NREL

CHGF
Vapor

Upgrading
Ex situ CFP
NREL,ORNL

[2] Integrated Membrane Separations Technology for Carbon Recovery from Hydrothermal Liquefaction (HTL) Aqueous Streams

[3] Molecular Removal Technology (Adsorbents) for Pre-Processing of Liquid Bio-Oils/Bio-Crudes

[4] Integrated Process TEA and LCA

Project Milestones

2 – Technical Approach

[1]: CHGF of Biomass Fast Pyrolysis Vapors

Approach

- Filter particulates to <u>protect</u> CFP upgrading catalyst performance, lifetime
- Add catalysts to convert unreactive oxygenates to upgradable components to increase carbon conversion to products
- Remove heavy vapor components to <u>reduce</u> carbon loss via upgrading catalyst coking

Challenges

 Developing efficient catalytic filters that convert unreactive oxygenates while preserving biomass carbon (< 10% yield loss) and demonstrate extended performance (> 25 h)

Critical Success Factors/Outcome

- Demonstrated tunability of vapor chemistry (pre-upgrading)
- Enhanced CFP product (fuels, chemicals) composition post-upgrading
- Industry accepted filter and catalyst sorbent performance, lifetime and regenerability

2 - Technical Approach

[2]: Valorizing Carbon from HTL Aqueous Streams

Approach: Develop membrane separations to recover/concentrate organic acids and ammonia in HTL aqueous streams:

Couple ANL's ion-exchange polymer wafer/membrane to extract carboxylic acids with ORNL's dehydration/dewatering membranes to remove water at higher acid content

Challenges

Developing efficient hybrid membranes that extract water and concentrate organic acids simultaneously in complex aqueous bio-crude streams; recover high value organic acids

(Stage-2) HiPAS: ~30 to >50 wt% acid

Critical Success Factors

- Demonstrate extended bio-crude aqueous stream separations to reduce water and concentrate organic acids
- Industry accepted membrane performance, lifetime and regenerability
- Efficient organic acid and ammonia recovery/reuse to offset process cost

2 - Technical Approach

[3]: Cleaning Bio Oil via Sorbents

Approach

- Develop polymer and inorganic adsorbents to remove nitrogen species in sludgederived HTL bio-crude and carbonyl species in woody bio-oil pre-HT
- Demonstrate reduced H₂ consumption and increased down stream HT throughput
- Recover high value nitrogen species (indoles, pyridines, piperidines, pyrazines, pyrroles, and pyrrolidines)

Challenges

 Developing efficient sorbent performance in complex bio-crude liquids to remove carbonyl contaminants and recover high value nitrogen species

Critical Success Factors/Outcomes

- Extended bio-crude HT to fuels
- Industry accepted sorbent performance, lifetime and regenerability
- Efficient nitrogen product recovery to offset process cost

3 - Technical Progress

[1]: CHGF - Clean/condition Biomass FP Vapors

Fast Pyrolysis Vapors Upgrading Ex situ CFP

Hypothesis: CHGF can extend catalyst lifetime and provide low Capex bio oil stabilization

Background

Biomass fast pyrolysis vapors contain char, alkali aerosols and carbonyls that destabilize bio oil vapor feeds and bio oils

Results

- Ceramic filter removes > 99% char and alkali from FP vapor
- CeO₂ catalysts convert acetic acid to ketones
- HPA catalysts deoxygenate, alkylate vapor feedstocks (pre-CFP)

Outcomes

- HGF provides particulate-free vapors for catalytic upgrading
- CHGF converts unreactive oxygenates to upgradeable species enhances C conversion to product
 Bioenergy Technologies Office

A) Filter housing, B) catalyst coated on filter or C) packed in filter interior

Technical Progress

[1]: Feedstock and Catalyst Impact on CHGF

Hypothesis

Feedstock and catalyst may impact CHGF vapor composition, downstream catalyst lifetime and oil stability

Background

Determining biomass feedstock and catalyst impact on vapor feed is required for CHGF development

Results

- Pine and pine residues exhibit similar conversion with zeolites (BTX)
- CeO₂ converts acetic acid to more upgradable acetone

Outcomes

- REO₂ catalysts candidates for ketonizing carboxylic acids
- CHGF is feedstock agnostic

Technical Progress

[2]: Valorizing Carbon from HTL Aqueous Streams

Hydrothermal Liquefaction PNNL, ANL

Aqueous Streams

Hypothesis: Selectivity and material stability to handle concentrated organic acids can be developed

Background: Organic acid concentration >50 wt% is required to be economical

Results: (>25 wt.% ammonia from algae HTL aqueous phase) and >50 wt.% acids captured separately for FY2018 Go/No Go milestone

Outcomes

- Demonstrated polymer wafer extraction of acids/ammonia from dilute aqueous streams (Stage 1)
- Developed strongly adhered, chemically stable HIPAS membranes for dewatering (Stage 2)
- Conducting TEA for cost assessment
- Develop new adsorbent in wafer membrane to capture individual acid and ammonia species

Percentage of Acids/Ammonia Separation

FY18 annual milestone met:

Capture > 50wt% acetic acid using the HIPAS membrane

Technical Progress

[3]: Cleaning Bio Oil and Bio Crude via Sorbents

Hypothesis: Carbonyl reduction >25% in pine FP bio oils is possible using selective sorbents

Background: FP bio oil has carbonyl content of 4.5 mmol/g; sludge HTL crude has ~5 wt% N; these contaminants impact downstream HT catalysts

Results: Demonstrated 34% removal of carbonyl contaminants

- Exceeds the target (carbonyl reduction >25%)
- Carboxylic and phenolic acids were also reduced

Outcomes:

- Carbonyl removal correlates with adsorbent basic sites measured with CO₂ adsorption studies
- Strong acidic sorbents can remove 52% pyridine in complex HTL crude surrogates

4 - Relevance

Develop critical and efficient thermochemical separation processes to remove process contaminants before upgrading through catalyst preservation, carbon valorization and process intensification strategies

- Project directly supports BETO's mission: transform biomass into commercially viable, refinery integrable biofuels
- Efficient thermochemical separations are consistent with BETO's goal of a < \$3/GGE range fuel production cost
- Project addresses a critical need for separations enabling technology development (catalysts, sorbents, membranes) that enable bio oil/crude conversion to fuels and chemicals
- Project metrics and technical targets are vetted by the IAB
- Reduce separations costs by:
 - Protecting downstream upgrading catalysts (↑ lifetime, ↓ losses)
 - Valorizing carbon from aqueous process streams
 - Producing more upgradeable bio oils for upgrading

5 - Future Work (Plan)

[1]: Catalytic Hot Gas Filtration of FP Vapors

- Assess rare earth oxide catalysts for ketonizing acids, carbonyls to more easily upgraded ketones
- Optimize HPA catalyst/support for coupling FP vapor oxygenates pre-upgrading
- Assess heavy species removal via fractional vapor condensation on bio oil
- Update process TEA to determine impact on fuel MFSP

Hydrothermal Liquefaction Aqueous Streams

[2] Integrated Membranes for C Valorization of Aqueous Streams

- Design/understand membrane chemistry for acid capture in aqueous streams
- Introduce ultrafast molecule-transport interfaces to enhance H₂O transport in membranes
- Evaluate sulfonated poly ether ketone as binder in resin wafers for acid capture

[3] Sorbents for Bio Oil/Crude Cleaning

Hydrothermal Liquefaction

- Develop sorbents with strong acidity and high site density for bio crude cleaning
- Understand oxygenate impact on adsorbents (with CCPC modeling task)
- Assess selected sorbents for denitrogenating actual sludge HTL bio-crude

5 - Future Work (Milestones)

[1]: due <u>6.30.2019</u>: CHGF Improvement via Fractional Vapor Condensation

[NREL, ORNL] Demonstrate decreased coking when cofeeding VGO and fast pyrolysis oil (NREL and ORNL). Demonstrate at least a 10% decrease in catalyst coking at bench-scale by cofeeding VGO and FP oil which has been passed over a hot gas filter and has the heavy (>300°C), coke-precursors compounds removed using fractional condensation

Progress: on target for completion

[3]: due <u>3.31.2019:</u> Membrane Performance

[ORNL] Demonstrate commercial large-dimension dip coater-assisted ceramic tube-supported HiPAS membranes exhibit equivalent or better performance compared to that of existing research-grade membrane coatings (i.e., state-of-art performance: exceeding 0.1-0.25 LMH at separation factor of >10)

Progress: on target for completion

Summary

Overview

Project develops efficient thermochemical separation processes to remove bio oil feed contaminants before upgrading to fuels and chemicals and capture/valorize carbon in biomass-derived aqueous streams.

Approach

Develop catalysts, membranes and adsorbents to 1) clean/separate contaminants in bio oil feeds from FP, CFP and HTL pre-upgrading to fuels and chemicals and 2) capture valuable carbon in process streams for co-products

Technical Progress

[1]: Catalytic Hot Gas Filtration

Met the 2018 CHGF performance metrics with Mo-HPA/TiO₂ catalyst: 26% reduction in summed oxygenates, 17% increase in summed alkylated species including methylated naphthalenes, <10% oil yield loss to the filter

[2]: Integrated Membranes

Met the 2018 annual milestone demonstrating the capability of HIPAS membrane to concentrate acetic acid feed to > 50 wt%

[3]: Selective Sorbents

Found that nitrogen-fatty acid complexation hinders pyridine adsorption in HTL biocrude

Summary

Relevance

This project develops critical and efficient thermochemical separation processes to remove process feedstock contaminants before upgrading through catalyst preservation, carbon valorization and process intensification strategies

Future Work

[1]: Catalytic Hot Gas Filtration

- Develop catalysts for tailoring FP vapors to produce enhanced and stable CFP oils (carbonyl conversion, carbon coupling, heavy species removal)
- Assess process costs via TEA to determine impact on fuel MFSP

[2]: Integrated Membranes

- Design/understand membrane chemistry for acid capture in aqueous streams
- Develop enhanced H₂O transport and PEK binders in membranes for acid capture

[3]: Selective Sorbents

- Develop sorbents for HTL feedstock and bio crude cleaning
- Understand oxygenate impact on adsorbents (with CCPC modeling task)

Acknowledgements

BETO: Nichole Fitzgerald

Steering Committee: Jennifer Dunn, Taraka Dale, Todd Pray

TEA/LCA SepCon Team: Mary Biddy, Sue Jones

PNNL

Huamin Wang

Corinne Drennan

Suh-Jane Lee

Jian Liu

Marie Swita

Asanga Padmaperuma

Mike Watson: (JM)

JM(X)

ORNL

Michael Hu

Mi Lu

Zhenglong Li

Tim Theiss

Ting Wu

Johnson Matthey

ANL

YuPo Lin

Lauren Valentino

Louis Edano

NREL

Steve Deutch

Chai Engtrakul

Stefano Dell'Orco

Brady Peterson

Mike Sprague

Nolan Wilson

David Chiaramonte

Additional Slides

Acronyms and Pathways
Publications
Patents
Presentations
Awards

Project Acronyms and Pathways

CFP: catalytic fast pyrolysis

CHGF: catalytic hot gas filtration

CO: carbonyl

CAN: carboxylic acid number

FP: fast pyrolysis

HT: hydrotreating

HTL: hydrothermal liquefaction

LCA: lifecycle analysis

TCS: thermochemical separations

TEA: technoeconomic analysis

Separations Tasks

Publications, Patents, Presentations, Awards, and Commercialization

Publications

- B. Peterson, C. Engtrakul, K. Magrini, Assessing Catalytic Hot Gas Filters for Biomass Fast Pyrolysis Vapor Cleaning and Deoxygenation, in review Green Chemistry, February 2019.
- Varada M. Palakkal, Lauren D. Valentino, Yupo J. Lin, Christopher G. Arges,"Highly conductive ion-exchange resin wafer wafers produced from ionomer binders for electrochemical separations", to be submitted to ACS Sustainable Chemistry & Engineering, 2019.
- Michael Z. Hu*, Chaiwat Engtrakul, Brian L. Bischoff, Mussie Alemseghed, and Mi Lu, "Surface-Engineered Inorganic Nanoporous Membranes for Vapor and Pervaporative Separations of Water-Ethanol Mixtures", Membranes 8, 95 (2018). doi:10.3390/membranes8040095. Resolution ID: 110238
- Michael Z. Hu*, and Marissa Morales, "Super-hydrophobic and super-hydrophillic surface functionalized porous inorganic (ceramic or metallic) membranes for oil-water microemulsion separations," Invited contribution to special issue of I&EC, August (2018).
- Shenjie Xu, Feng Li, Baowei Su*, Michael Z. Hu*, Xueli Gao, and Congjie Gao, "Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination," Desalination, accepted, April (2018). Resolution Pub ID: 110764
- Mi Lu, Andrew Lepore, Jae-Soon Choi, Felipe Poli Garzon, Zili Wu, Kim Margrini, Mark Javis, and Michael Z. Hu* "Carbide catalysts for catalytic hot gas filtration to tailor vapor chemistry of fast pyrolysis process," catalysts 8, 643 (2018).
- Michael Z. Hu, "Nanostructured Polymer-Graphene Hybrid Coatings for Membrane Separations and Energy Applications," Proceeding book for 2nd International Conference on Membrane Science and Technology, Sept13-14, 2018, London, UK. Resolution Pub ID: 117946. DOI: 10.4172/2155-9589-C1-004

Patents

- Hu, M.Z.; Engtrakul, C.; Bischoff, B.L.; Davis, M.F. Integrated Membrane-Pyrolysis-Catalytic Upgrading Systems, ORNL/NREL Invention Disclosure ID 201503495, DOE S-138,126 (2017); US Patent US10,118,124B2 (Nov. 6, 2018).
- Hu, Michael Z. et al. "Super-surface selective nanomembranes providing simultaneous high permeation flux and high selectivity", US Patent 9,308,501 B2 (August, 2018).
- Provisional patent filing for Invention Disclosure 201704036. "Fast-Permeating Graphene-Polymer Hybrid Membranes for Dewatering, Desalination and Water/Ion Separations." Inventor: Michael Z. Hu.
- Provisional patent filing discussion for Invention Disclosure 201503616. "External Field Aligned Graphene Sheets Particulate Deposit Films/Electrodes" Inventor: Michael Z. Hu NREL Invention Disclosure K. Magrini, B. Peterson, C. Engtrakul, "Catalytic Hot Gas Filtration System: Filters and Catalysts for Catalysts for Alkylating Biomass Vapors for Fuel Production", NREL Record of Invention filed October 4, 2018.
- Invention Disclosure 201804070. "Separations of Bio-Derived 2,3-Butanediol (BDO) for Enhanced Thermal Catalytic Upgrading." Inventors: Michael Z. Hu and Zhenglong Li. Invention Disclosure 201704043. "Catalysts for Catalytic Hot Gas Filtration to Tailor Vapor Chemistry of Fast Pyrolysis Bio-Oils." Inventors: Michael Z. Hu, Mi Lu.
- Invention Disclosure 201704033. "Sorbent Selective Removal/Reduction of Carbonyls and Carboxylic Acids for Bio-Oil Stabilization and Down-Stream Catalyst Preservation." Inventors: Michael Z. Hu, Mi Lu.

Awards

- 2018 Best Paper/Presentation Award from American Chemical Society (ACS), for paper I&EC 144 (Surface functionalized nanomaterials for separation processing of crude and aqueous streams of biooils) that Hu presented at the 255th ACS National Meeting in New Orleans in March 2018
- 2018 Certificate of Recognition, honored by Editors of Journal of Membrane Science & Technology, for Hu's phenomenal and worthy Keynote presentation on "Nanostructured Polymer-Graphene Hybrid Coatings for Membrane Separations and Energy Applications," at the 2nd International Conference on Membrane Science and Technology, September 13-14, 2018, London (UK).

Publications, Patents, Presentations, Awards, and Commercialization

Awards cont.

Year 2017 Outstanding Alumni Contribution Award: On Nov. 26, Dr. Michael Hu has received 2017 Alumni Award (certificate and trophy) from Nanjing University of Technology.

2017 July DOE/EERE Success Story: for recognition of Dr. Hu's team research work on HiPAS nano-membrane development for improved separation processing of biofuels and bioproducts.

Presentations

Braden Peterson, Chaiwat Engtrakul, Nolan Wilson, Stefano Dell'Orco, Jessica Olstad, Yves Parent, Kim Magrini, "Conditioning of Pyrolysis Vapors via Catalytic Hot-Gas Filtration for Enhancement of the Ex-Situ Catalytic Fast-Pyrolysis Process", poster presentation accepted to TCS 2018, October 8-10, 2018, Auburn, AL.

K. Magrini, B. Peterson, N. Wilson, C. Engtrakul, Separations Consortium Update: Task C3: Catalytic Hot Gas Filtration", BETO Conversion Update, September 28, 2018.

Michael Z. Hu, Mi Lu "Surface-functionalized nanomaterials for separation processing of crude and aqueous streams of bio-oils", 255th American Chemical Society, March

Mi Lu, Michael Z.Hu "Catalytic hot gas filtration for tailoring vapor chemistry of fast pyrolysis bio-oils", 255th American Chemical Society, March 2018, New Orleans, LA. Mi Lu, Michael Z.Hu "Chemical Separations for Improved Catalytic Upgrading of Fast Pyrolysis Bio-Oils", AIChE Nov. 2017, Minneapolis, MN."

Technology transfer or commercialization efforts

Milestone Reports

2018. New Orleans, LA.

Brady Peterson, Chaiwat Engtrakul, Nolan Wilson, <u>Kim Magrini</u>, "Achieve 2018 CHGF Performance Metrics: The end of the year goal for this subtask is a robust metal/oxide-modified CHGF process that produces biomass fast pyrolysis (FP) oils that are refinery-compatible and to deliver <20% summed oxygenates, <0.1% char and alkali particulates, <10% oil yield loss, and up to 10% coupled products. NREL will update the CHGF process TEA using FY18 results (with analysis task)", BETO Separations Consortium Milestone Completion Report, September 30, 2018.